

MAKING RESILIENCE A REALITY

DOE Electricity Advisory Committee (EAC)
July 9, 2018

Anda Ray Electric Power Research Institute (EPRI)

Senior Vice President External Relations and Technical Resources

Introduction to EPRI

BORN IN A BLACKOUT

Founded in 1972 as an independent, nonprofit center for public interest energy and environmental research

New York City, The Great Northeast Blackout, 1965

EPRI'S VALUE

To provide value to the public, our members, and the electricity sector

THOUGHT LEADERSHIP

INDUSTRY EXPERTISE

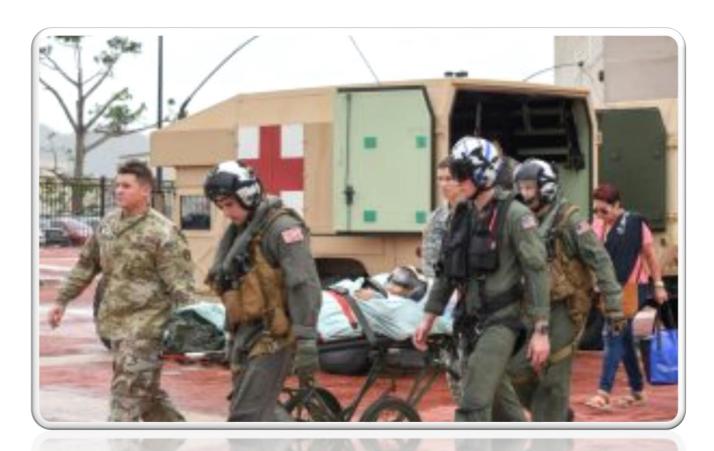
COLLABORATIVE MODEL

OUR MEMBERS...

- 450+ participants in more than 30 countries
- EPRI members generate approximately 90% of the electricity in the United States
- International funding nearly 25% of EPRI's research, development, and demonstrations
- \$415M Annual Funding

The Objective of Increasing Resilience - "The Why"

Quality of Life:


- Heating/Cooling
- Refrigeration
- Cell phones
- Internet

Economic impacts:

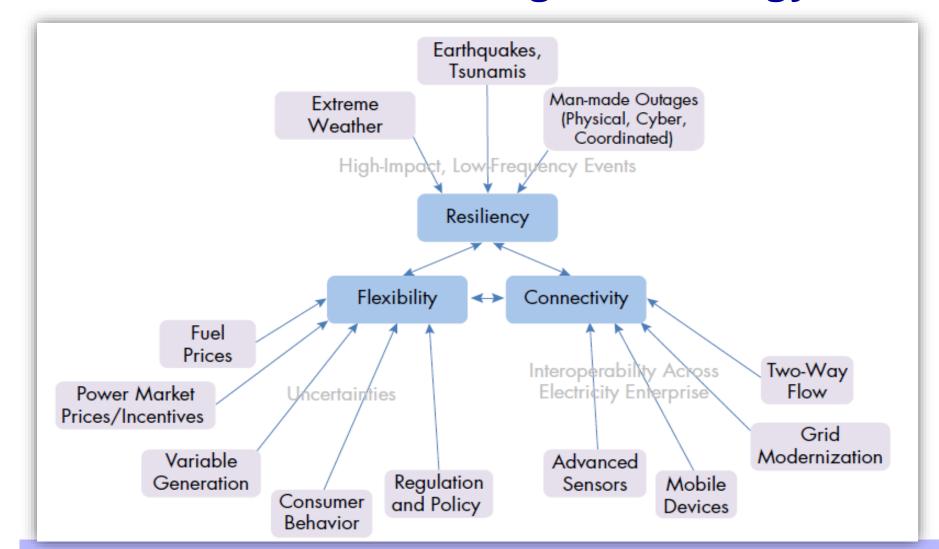
- Perished goods
- lost sales
- diminished worker hours and income

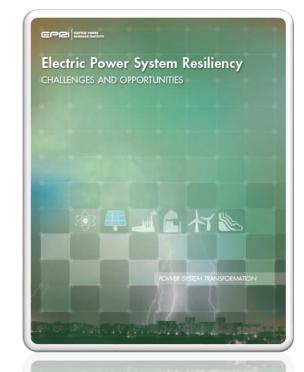
<u>Diminished Emergency Services:</u>

- Fire
- Law Enforcement
- Rescue Operations
- Medical Services/Medicine

Air Force photo by Capt. Christopher Merian in Puerto Rico

Integrated Energy Network




Source: EPRI 3002009917 February 2017

Integration of Interdependent Energy Resources:

Improves Reliability, Resiliency, Efficiency, Productivity, Create New Opportunities, and Expand Customer Choice

What is needed in an Integrated Energy Network?

Source: EPRI 3002007376 February 2016

Resiliency, Flexibility and Connectivity

Areas of Resilience Development – Identifying the "Parts"

Framework and Models

Interdependencies

Threat Assessments

Vulnerabilities (n-K)

Impacts

Mitigation Options

Maturity Models

Valuation

Who Implements

Who Pays

North America - U.S.

- 200,000 miles of Transmission Line > 230kV
- 58,000 substations between bulk transmission System and distribution feeder systems

Resilience Frameworks and Models – What Scope?

All Interdependent Energy Assets?

Source: EPRI 3002009917 February 2017

All Components of the Power System?

Threats – Extreme
Weather, Cyber &
Physical

All Hazards Planning
and Decision
Support

Outreach/Collaborate
(Industry, State, Local
and Federal)

Source: DOE (C Zamuda) June 14, 2018

Source: EPRI 3002007376 February 2016

Modeling the Changing Power System

Variable Renewables & 2-way Power Flow

Bulk & Distributed Energy Storage

Increasing Reliance on Natural Gas

Source: EPRI 3002010821 July 2018 (Pending)

Customer Control & Choice

Demand Response

Efficient Electrification

"Existing processes need to change to incentivize or prioritize resource attributes that result in a system that not only is reliable in the face of typical electrical system contingencies, but also resilient to HILF, all-hazard events."

Electric System Resilience Needs to Identify Various Threats

Manmade/ Adversarial

Hazards

EMP – High Altitude Electromagnetic Pulse

IEMI – Intentional Electromagnetic Interference

Cyber Terrorism

Coordinated Physical Assault

Seismic Event – High Magnitude Earthquake

GMD Geomagnetic Disturbance (Severe Space Weather)

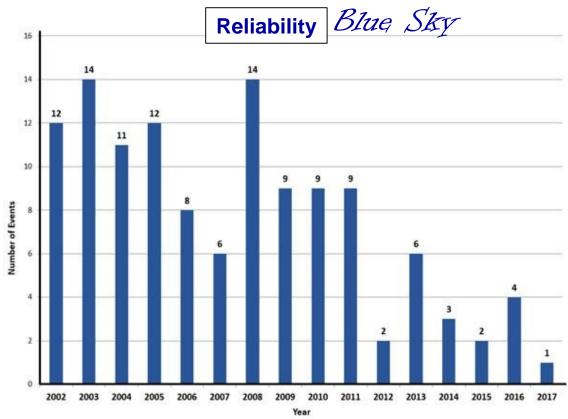
Hurricanes, Ice Storms and Other Severe Weather Events (including Wildfires)

Hardening/ Prevention

Response/ Recovery

Identifying the Spectrum of Vulnerabilities

Examples: Both "Operating Technologies" (OT) and "Information technology" (IT)


Threats and Specific Vulnerabilities											
Severe Weather				Physical Attack		Electromagnetic			Cyber Attack		Workforce
Wind	Winter Storms	Earthquake	Floods/ Tsunamis	Substation Intrusion	Off-Site Attacks	EMP	IEMI	GMD	Corporate	ICS/SCADA	Epidemic Outbreak
oundations &	Availability Availability	alignment wett	diprient Ma	tunction and Day	Allacks Allacks Allacks Allacks	Kalip.	Access Access	kallures Kosensitiv	e Information System	n Controls	Notktorce

For High Impact, Low Frequency (HILF) Events: Identify the Specific "All Hazards" Vulnerabilities – All or Transmission System, Only?

Impacts

Impacts: Reliability versus Resiliency

Bulk power system transmission events resulting in loss of load. Load loss was lower in 2017 than in any year since 2002.

Source: RTOInsider, NERC, June 25, 2018

Utility Customer

Regulator

Public

IMPACTS

Transmission Resilience – Mitigation Measures

Examples:

Modes of Mitigation		In-house assessment					
	Assess	Outside investigations					
		Establish informal SME network					
		Install physical barriers					
	Drovent/Herden	Replace/Reinforce vulnerable components					
	Prevent/Harden	Update security procedures					
		Develop operational guidelines					
	Detect/Monitor	Establish weather related communications					
		Install seismic sensors					
		Install video monitoring equipment					
		Implement network logging and monitoring					
		 Join "Mutual Assistance" (EEI) and "Spare Equipment Database" (NERC) 					
	Recover/Restore	Develop contingency plans/Training/Drills					
		Backup Generation					
		Establish Communication Protocols (Emergency, Gov't, Public, etc.)					
	Adapt/Community	Prioritized Restoration Plan					
		Implement "Shared Integrated Grid Plans"					

Mitigation Options

Damage Prevention and Assessments Help Harden the System

Anti-icing (Examples of EPRI Transmission-related Work) conductor work

Distribution Pole Attachments

Advanced Vegetative Management

Technical Support for GMD Standard

EMP Studies to inform utility investments

Climate Change Vulnerabilities and Adaptation for Electric System

Response/ Recovery

Mitigation Options

Response and Recovery Support Rapid Assessment and Repair

Unmanned Aerial Systems

Black Sky Communications

Transmission Equipment Assessment Using Artificial Intelligence

EMS Contingencies

Specialized Equipment

Hardening/ Prevention

Response/ Recovery

Mitigation Options

Response and Recovery Support Rapid Assessment and Repair

Communication, CIS, Integrated Grid Platform*

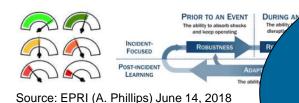
Microgrids

PV Systems as Backup

Storage for Grid Resilience

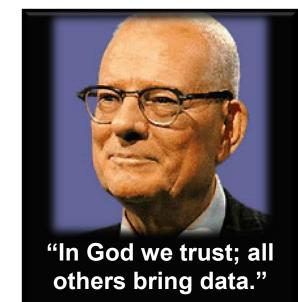
Restoration and Back up for Essential Services

Hardening/ Prevention


Response/ Recovery

Multiple "Maturity Models" Support Resilience of the Grid

Resiliency **Maturity Models**


Cyber Maturity Models

January 2018 order, FERC proposed a definition for bulk power system resilience as:

"The ability to withstand and reduce the magnitude and/or duration of disruptive events, which includes the capability to anticipate, absorb, adapt to, and/or rapidly recover from such events."

- W. Edwards Deming

Smart Grid Maturity Models

Customer Resiliency Maturity Models

How is Resiliency Valued? Benefit - Cost

Responsibility for Resilience - Crosses Many Lines

Federal

Other Federal Government Entities

Federal Energy Regulatory Commission

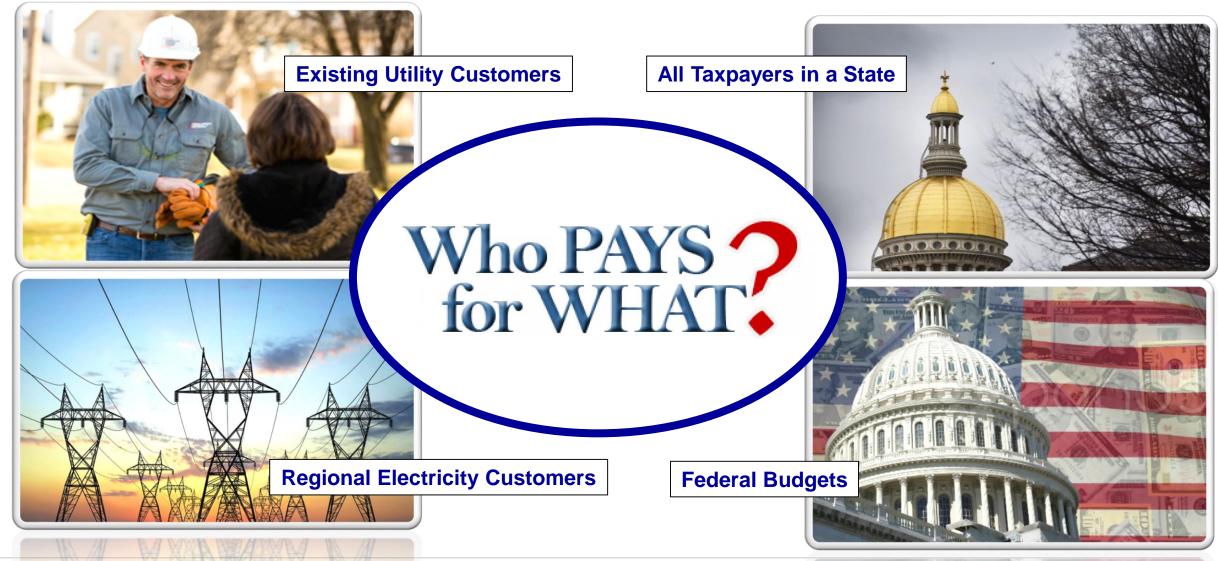
NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

State

RTOs/ISOs - Balancing the System

Other

Edison Electric


Advocacy Organizations

Energy Providers – IOUs, Munis, Coops

Academia

Who Should Pay for a Resilient Power System?*

Key Areas of Resiliency Focus: DOE OE and EPRI

ELECTRIC POWER
RESEARCH INSTITUTI

Key Areas of Resiliency:

- 1. Integrated Energy
 Network Resiliency
 Modeling
- 2. T&D Infrastructure Modeling/NATF
- 3. Customer Resiliency
- 4. Cyber and ICT Resiliency

Protection of National Security

17 National DOE Labs and Public, Private Partnerships
Electric Grid is 1 of 16 DHS National Critical Infrastructures

Together...Shaping the Future of Electricity